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Amplitude modulation of electromagnetic waves by 
alternating magnetic fields 

M. S. SODHA, A. K. ARORA and P. K. KAW 
Physics Department, Indian Institute of Technology, New Delhi, India 
MS. received 12th July 1967, in revised form 24th August 1967 

Abstract. In  this paper the authors have given a quantitative analytical investigation 
of the interesting concept of the modulation of an electromagnetic wave by its propa- 
gation along an alternating magnetic field in a semiconductor or a plasma. Numerical 
results, presented a t  the end, show that this phenomenon is appreciable. 

1. Introduction 
Mason et al. (1953) have shown that, when a crystal is simultaneously subjected to a 

mutually perpendicular alternating electric field of frequency w and alternating magnetic 
field of frequency 0, the Hall voltage alternates with the frequency w and the sideband 
frequencies w ~f: 0. This suggests that an electromagnetic wave, propagating in a semi- 
conductor or a plasma along the direction of an alternating magnetic field, should become 
amplitude modulated at the frequency of the magnetic field. This paper presents a quanti- 
tative investigation of this interesting concept. 

The Boltzmann transfer equation for free electrons has been solved by the authors in 
the presence of mutually perpendicular alternating electric and magnetic fields. Various 
time-dependent components of the distribution function have been evaluated by solving 
the coupled system of equations and an expression for the time-dependent current density 
has been derived; the only assumption used is that the magnitudes of the electric vector of 
the generated frequencies are much smaller than that of the incident frequency. The  
expression for current density has been substituted in the general wave equation, and the 
solutions have been used for investigating the magnitude of modulation of the wave after it 
propagates a certain distance in the medium and also of the reflected wave from the 
medium-free-space interface. 

Some numerical calculations have been made for semiconductors as well as plasmas 
when the incident frequency is equal to the gyrofrequency of the electrons ( w B  = eB/mc); 
the results have been presented in the form of tables. 

2. Sideband components in the current density 
The Boltzmann transfer equation for electrons in a homogeneous medium subjected to 

an electric field E = E, exp(iwt) in the xy plane and a magnetic field B = Bo + B ,  exp(i0t) 
in the x direction is given by 

where 
M,' = - [U,, exp(iwt) + v,(uB+ COB, exp(iRt))] 

M ~ '  = - [ay, exp(iwt) -uZ(wB+ wB1 exp(int)}] 

a,, = eE, , /m,  

(2.2) 

(2.3) 

ay1 = eE,,/m 

w is the frequency of the wave, &2 that of the applied magnetic field, wB = eB,/mc and 
wB1 = eB,/mc; (a f /a t ) ,  represents the rate of change of the distribution function due to 
collisions which for Lorentzian plasmas and simple-model non-degenerate semiconductors 
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with dominant acoustic scattering is given by the expression (Desloge and Matthysse 1960) 

m a  kT a 
(vv3f0)+ - - 

i v V 2  av 
where the symbols used have their usual meaning. In  the present context the distribution 
function of electron velocities may be expanded in the form 

f = fO+v,[f,,l exp(iwt)+ fiI2 exp{i(w+ Q)t}+fZl3 exp{i(w-Q)t}] 

+ v ,[ fyl l  exp( iw t )  + f y l z  exp{i( w + Q)t) + f y13 ““pi( w - Q)t}] .  (2.5) 

Substituting for a,’, a,’, (af/at),  and f from equations (2.2) to (2.5) in equation (2.1), 
and equating the coefficients of  TI,,^ exp(iwt), v , , ~  exp{i(w + Q)t) and U,,,. exp{i(w - Q)t) on 
both sides of the resulting equation, one obtains a set of coupled equations involving the 
various components off. It may be mentioned here that while performing the product of 
terms involving complex exponentials, one must keep in mind that the real part of the 
product is not equal to the product of the real parts of the two multiplying quantities. 
Thus one has to modify the simple product operation to the form 

W{Al  exp(iwlt)}W{A, exp(iw,t)) 

= +w[A,A, exp{i(w, + wz) t }  + ALA, exp{i(w, - U&}] 

where W denotes the real part and A”, denotes the complex conjugate of A,; A,, A,  have 
been chosen complex to allow for any phase terms in the multiplying quantities. 

By solving the above-mentioned set of coupled equations, using the approximation that 
fZl2 ,  f Z l 3  < f,il and fYl2 ,  f Y l 3  < f,: (which means that the generated sideband components 
have a much smaller magnitude than the fundamental component), expressions for various 
components of the distribution function may be derived; these are 

fZll = [v3azl -v2(wBayl + iwa,, +u{(wB2 + w2)a,, +2iwwBayl> + (wg2 - w2)(iwa,, - wgayl) l  

w B ~  1 a f 0  
(v6ayl + AX6v5w0  + A , , v 4 ~ 0 2  + A , , v ~ w ~ ~  + A , , v ~ w ~ ~  + At lvwO5 + A,o~06)  - - 

z’ av f Z l 2  = - 

x [{~2~(~+~g)2}{~2+(~-~Wg)2){1.’2+(~f~+~g)2}{~2+(~f~-~Wg)2}]-1 

(2.7) 
where wo is an arbitrary normalizing frequency and 

1 

WO 

A,, = -{Z wBaxl - i(2w + Q)a,,} ( 2 . 8 ~ )  

1 
A,, = -- [ {wg2 - w2 - ( U  + Q)(6w + Q) + 2(2w + Q)2}a,, - 3iwB(2w + Q)a,,] 

A,, = --[4 w ~ { w ~ ~  - U( w + Q)}a,, + i(2w + Q){2wg2 - w2 - ( w  + Q)z}a,,] 

(2.8b) 

(2 .8~)  

WO2 

wO3 

1 

1 
A,, = __ [{cog2 - ( w  + Q)2)(w,2 - w2)ayl  

wO4 

- {wB2 + w(w + Q)}{2wg2 - w2 - ( w  + ~ ) ( 5 w  + Q)}a,, 

+2(2w+R)2{wg2-  w ( w +  Q Z ) } a , , - i { 2 ~ , ~ + w ~ + ( w + ~ ) ~ ) ( 2 w + Q ) w ~ a , ~ ]  (2 .8d )  
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1 
A,, = - [2 wB(wB2 - w2){wB2 - (U  + Q)2}ax1 + 2wB(2w + Q ) 2 { ~ B 2  - w ( w  + Q)}axl 

wO5 

+ i(20 + Q)(wB2 - w 2 ) { ~ B 2  - ( U  + Q)2}ay, + 2 i ( 2 ~  + a){wB4 - w2(w + Q)2}ay1 

(2.8e) 
1 

A,, = - [ - ( W ~ ~ - ~ ~ ) ( W ~ ~ - ( W + Q ) ~ ) { ~ ~ ~ - ~ ( W + Q ) } ~ ~ ,  
WO6 

+ iwB(2w + Q){wB2 - ( w + Q)’}( COB’ - w2)a,,]. (2.8f)  

Expressions for the y components of the distribution function can be written similarly 
by replacing a,, by ayl and a,, by -a,,. The expressions corresponding to the frequency 
w -  L2 can be written by replacing L2 by - 51 in equation (2.7). 

In  the following analysis the form of the isotropic part of the electron distribution 
function has been taken to be Maxwellian; this means that the non-linear contribution due 
to external fields has been assumed to be negligibly small. Thus we assume 

m 312 mv2 
f o  = N (--) 2nk T exp(- --) 2k T 

where the various symbols have their usual meanings. 

values of components off in the equation 
The  expression for the current-density components can be derived by substituting the 

J =  - e I m  Im f m  v fdv ,dvydv ,  
- - m  - m  - m  

which, using equation (2.5), can be simplified to the form 

(2.10) 

The expression for the current-density components can be written in a convenient form 
(so as to correspond to the two modes of propagation of an electromagnetic wave) 

JXl1 k iJyll = A.(E,, f E,,)exp(iwt) 
JXl2 I i Jy12  = C,(E,, I iEyJexp{i(w + Q)t} 

( 2 . 1 1 ~ )  
(2.11b) 

where A ,  and C, are complex coefficients involving integrals. These constants have 
been evaluated in two different cases taking a general dependence of the collision frequency 
on energy 

v = v o X n / z  

where x = mv2/2kT is the dimensionless kinetic energy of electrons. 

2.1. Case I 
The collision frequency is much larger than the wave frequency, i.e. v 9 w .  Then 

(2.12b) 
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2.2. Case II: 
In  this case the collision frequency is much smaller than the wave frequency, i.e. v < w. 

We further distinguish between the following three cases: 
(i) When w = wB and v > L2 (at gyrofrequency of the medium) 

VO 

c- = o  
(ii) At low magnetic fields, i.e. w wB, 

(iii) At high magnetic fields, i.e. w 4 wB, 

(2.15b) 

(2.13a) 

(2.136) 

(2.1 3c) 

(2.13d) 

(2.14a) 

(2.14b) 

( 2 . 1 5 ~ )  

where 

and 

n ( y )  = Sm x'e-2 dx = r(Y+i). 
0 

The expression for the total current density including the component due to the 

J X I 2  h iJYl2 = A * ' ( E X 2  i iE,,) + C.(E,, i- iEul) (2.16) 
where A*' have a similar expression to those of A ,  except for the difference that w is 
replaced by w + 0. The rest of the expressions for JXI3 &- iJYl3 can be written by symmetry 
by replacing SZ by - s1 in expressions for J X l 2  +_iJ,?. 

generated fields E,, i- iE,, is given by 

3. Modulation in propagating and reflected waves 
The wave equations governing the propagation of the two modes of electromagnetic 

wave along the x direction in a medium with free carriers (in the presence of a magnetic 
field) may be written as 

d2(E,  +_ i E y )  ~p a2(E, iE,) 457-p a(J ,  i- iJ,) +- ( 3 - 1 )  - _  - - 
dz2 c2 at2 C2 at 
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which may be reduced to the dimensionless form 

+- = -  
a p  w2 a t 2  €U2 at 

where 8, = E,/E,,, E,, being any arbitrary normalizing field, f = ( ~ p ) l ' ~ 2 7 r ~ / h ,  E is the 
d.c. dielectric constant of the medium and p the magnetic permeability. Substituting the 
expressions for the current density components from equations (2.1 la )  and (2.16) in 
equation (3.2), the wave equations corresponding to different frequencies come out to be 

where the various constants are given by 

4ni 
€ U 2  

(P1*)2 = 1-- wA* 

4ni 
€ U 2  

s,* = -- (w + n>c* 

(3.6a) 

(3.6b) 

(3 .6~)  

(P3* )2  and 63* can be written by replacing 51 by - 51 in the expressions for (/32*)2 and a,* 
respectively. 

The  solution of the equation (3.3) is 

G,, i ib,, = Kl* exp(iP,*[) ( 3 . 7 )  
where the second term vanishes owing to the radiation condition, viz. that the field vectors 
vanish at 5 = a. 

Substituting this value of electric field vectors from equations (3.7) in equations (3.4) 
we obtain 

a2(gZ, I ig,,) 
____- +(Pz*)2(b,, i ig,,) = S,*K,* exp(iPl*t). at2 

This can be solved explicitly for two different cases: 
(i) When P,* # P1*, the solution is 

(3.9) 

where K,* is the constant of integration and is to be evaluated separately for the cases of 
propagation and reflection. 

(ii) When Pz* = P1* (this case corresponds to w 9 a), the solution is of the form 

(3 -10) 

Here again K,* are arbitrary constants as in (i). 
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3.1. Propagation 
If we apply the boundary condition that 

& z z i i B y 2  = 0 a t  t = 0 

the amplitude of the generated wave of frequency w + SZ at a distance f is 

in case (i) and 

(3.11) 

(3.12) 

in case (ii). 

3.2. Rejection 
Let an elliptically polarized electromagnetic wave having the electric vectors 

€,,I i&,, = i iAiyJ exp{i(wt-t)j 

be incident normally on the medium-free-space interface, viz. the plane = 0 from the free- 
space side. The  region - CO < .$ < 0 corresponds to free space whereas 0 < .$ < CO 

corresponds to the homogeneous medium. 

(8,  i i€,), = (Alz1 i iAiyl) exp{i(wt-t)}+(A,,, i iAPy1)  exp{i(wt+t)) 

The electric field in the free space is given by 

+ (A,,, i iAry2) exp ( w  + Q)t + - 
w 

+ (A,,, i iArya) exp ( w  - Q)t +- --a# 
w 

(i) When /3,* # P,*, the electric field in the medium is 

(8, F i b , ) M  = Kl * exp{i( wt + B1 * t)} + K2 * exp[ i{( w + G)t + Pz *(I] 
6, * K ,  * exp[i{( w + Q)t + P1 *[}I + + K 3 *  exp[i{(w-Q)t+/33*t}] (13, * - (81 * ) 2  

6 3  K ,  * exp [i{( w - Q)t + PI * t}] - + 
@3 * )' - (P1* 

The boundary conditions to be applied are 

and 

The  amplitudes of the reflected components are found to be 

(3.13) 

(3.14a) 

(3.14b) 

(3.15) 
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(ii) When P2* = PI*, the electric vector in the medium is given by 

(a,? i8y)M = K,* exp{i(wt+pl*I)}+K2* exp[i((w+Q)t+/3,*[)] 

If we apply the same boundary conditions as in (i), the amplitudes of the reflected 
components are 

(3.17) 

(3.18) 

The expressions corresponding to the frequency w - l2 are similar except for the difference 
that .Q is to be replaced by - SZ. 

4. Discussion 
Equations (3.11) and (3.12) give us the magnitudes of the two modes of propagation of 

the sideband components generated in the propagating electromagnetic wave because 
of the presence of an alternating magnetic field. The  corresponding expressions for the 
waves reflected from a plasma- or semiconductor-free-space interface are given by 
equations (3.16) and (3.18). 

When both the extraordinary and the ordinary modes of the carrier as well as the two 
sidebands are present in a medium, it is difficult to define a unique modulation percentage; 
this is so because in this case the carrier and the two sidebands are actually travelling in 
the form of elliptically polarized waves and the magnitudes of their electric vectors at any 
point in space vary from instant to instant. This difficulty can be avoided by defining the 
modulation percentage of the two circularly polarized modes separately. Thus in one case 
we assume the extraordinary carrier mode (and hence the extraordinary sideband modes) 
to be absent and define a percentage modulation for the ordinary wave only and vice versa 
for the other case. In  other words we define 

and 

The modulation percentage of a wave which has propagated a distance 5 into the 
medium is then given by 

f for case (ii). (4.1) 
62 + 

I** =- 2iP, * 
We have only chosen case (ii) ( w  >> 0) for numerical calculations because of its simplicity 
and because it will nearly always be valid for microwave frequencies. I t  is noted from 
equations (4.1) that is directly proportional to f ;  this conclusion is physically under- 
standable because after all it is the propagation of the electromagnetic wave through the 
anisotropic medium which is responsible for the modulation process. The above expression 
is not valid for values of f which correspond to large values of pi (say 0*15), because then 
the approximation that the magnitude of the generated sideband components are much 
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smaller than the fundamental (which we have used in deriving expressions for the sideband 
components of the current density) will be violated. 

Numerical calculations have been made for studying the variation of the modulation 
percentage with electron density and with the dependence of the electron collision frequency 
on electron velocity for some typical values of other parameters. The case w > v is more 
appropriate to plasmas; table 1 illustrates the variation of p+ with wpz /wz  and n for the 
conditions w < wB, w = wB and w > wB when x = 2.5 cm, wB1/w  = 1, and when 
vo/w = 0.01, vo /w  = 0.1 and vo /w  = 0-001 respectively. 

Table 1 

-- Modulation percentage (p  &) ---- 
W B  < w wB = w w B % w  

vo/w = 0.01 V 0 j W  = 0.1 vojw = 0.001 
n = O  n = O  n = l  n = O  

U P Z  

U 2  

0.2 0.71 7.06 5.24 0.62 
0.4 1.69 10.4 7.91 1 a23 
0.6 3.48 12.8 9.82 1.83 
0.8 7.27 14.9 11.4 2.42 

w 3 v ,  w B ~ / w  = 1, Z = 2.5 cm. 

- 

I t  is noted that the modulation percentage increases with the electron density and 
decreases with the power to which the electron velocity is raised in the expression for v. 
Further, the modulation percentage passes through a maximum at gyroresonance and 
decreases on both sides-the decrease on the high-field side is more as is seen by the fact 
that very low values of v0 /w  are needed to obtain appreciable percentage of modulation. 
The variation with collision frequency was also studied but has not been presented; it was 
found that when the collision frequency increases by one order of magnitude the modulation 
percentage decreases by one order. Table 2 presents the variation for the other case, viz. 
v $ w (which is applicable to semiconductors and laboratory plasmas), for n = 1. The 
conclusions are analogous in this case. 

Table 2 

Modulation percentage 

WD2/W' P i  

0.2 3.42 
0.4 6.83 
0.6 10.3 
0.8 13.7 

< v ,  w/vO = 0.1, fdBl/w = 1, z = 2h. 

The magnitude of the percentage modulation in the wave reflected from the medium- 
free-space interface was also studied ; this has, however, not been presented because these 
magnitudes were negligible. 
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